Minimization of scalar curvature in conformal geometry
نویسندگان
چکیده
منابع مشابه
Conformal Deformation of a Riemannian Metric to Constant Scalar Curvature
A well-known open question in differential geometry is the question of whether a given compact Riemannian manifold is necessarily conformally equivalent to one of constant scalar curvature. This problem is known as the Yamabe problem because it was formulated by Yamabe [8] in 1960, While Yamabe's paper claimed to solve the problem in the affirmative, it was found by N. Trudinger [6] in 1968 tha...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملOn conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملConformal Geometry
Arrows in this diagram indicate input from one topic to another. Closely related topics are joined by lines. Conformal geometry is highly analogous to CR geometry, so their boxes are close together and arrows run in both directions. The left hand side of the diagram is largely algebraic. At the top of the diagram, Q-curvature and ambient metrics are specific aspects of conformal geometry, which...
متن کاملAn equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature
We formulate natural conformally invariant conditions on a 4-manifold for the existence of a metric whose Schouten tensor satisfies a quadratic inequality. This inequality implies that the eigenvalues of the Ricci tensor are positively pinched.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Global Analysis and Geometry
سال: 2016
ISSN: 0232-704X,1572-9060
DOI: 10.1007/s10455-016-9524-2